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CALCULATIVE TECHNIQUES FOR TRANSONIC FLOWS 

ABOUT CERTAIN CLASSES OF WING-BODY COMBINATIONS 

By Stephen S. Stahara and John R. Spreiter* 
Nielsen Engineering & Research, Inc. 

SUMMARY 

Theoretical analysis and the development of associated computer 
programs were carried out for the purpose of developing computational 
techniques for predicting properties of transonic flows about certain 
classes of wing-body combinations. The procedures used are based on the 
method of local linearization and the transonic equivalence rule and apply 
to transonic flows with free-stream Mach number in the ranges close to 
one, below the lower critical, and above the upper critical. Theoretical 
results are presented for surface and flow field pressure distributions 
for certain members of the general classes of configurations studied, for 
both nonlifting and lifting situations, at M, = 1 and also at Mach 
numbers below the lower critical and above the upper critical. 

In addition, consideration was given to developing methods for 
calculating flows about bodies having a bump or indentation superimposed 
upon an otherwise smooth profile. The results indicate that a quasi- 
cylindrical theory is necessary to predict accurately transonic flows 
about these shapes. 

The computational programs developed under this report are documented 

and available under separate cover in a general user's manual. 

INTRODUCTION 

Until recently, the basic difficulty of solving the nonlinear 

and mixed elliptic-hyperbolic equations of transonic aerodynamics com- 

bined with the low level of interest given problems characteristic to 
this flight regime had resulted in little substantial advance in the 

*Professor, Departments of Applied Mechanics and Aeronautics and Astro- 
nautics, Stanford University, Stanford, California. (Consultant at 
Nielsen Engineering & Research, Inc.). 



solving of practical problems in this important area (refs. 1 and 2). 
However, within the past few years, the attention given to problems con- 
cerned with transonic flight has produced some encouraging results. 

For example, the results of reference 3 clearly demonstrate that a 
theory (local linearization method) already exists that is capable of 
accounting for many of the properties of three-dimensional, lifting, 
transonic flows and that, when combined with modern computational tech- 
niques, provides aerodynamic information inexpensively and of sufficient 
accuracy to be of practical design use. Thus, while completely numerical 
studies of transonic flows will continue to improve as machine capability 
increases (the recent work of references 4, 5, and 6 concerning two- 
dimensional transonic flows, and the work of reference 7 for nonlifting 
axisymmetric flows provide a good indication of the current state-of-the- 

art) , it appears that finite difference techniques for transonic flows 
about three-dimensional lifting configurations, such as the ones studied 

herein, remains a distinct (and expensive) future goal. Consequently, 
the parallel development of some of the already successful analytic 

techniques, in particular the local linearization method, is clearly 

warranted. 

Because the analysis of three-dimensional, lifting, transonic flows 
(both analytical and numerical) has received scant attention--prior to 
the recent investigation by the present authors (ref. 3) there existed 
only one isolated example of an application and experimental evaluation 
of transonic theory to a nonaxisymmetric lifting flow at M 03 = 1 (ref. 8)-- 
the work of reference 3 provided for the first time an exhaustive system- 

atic evaluation and comparison of theoretical and experimental results 
for transonic flows at Mco = 1 about several general classes of axi- 
symmetric and nonaxisymmetric slender bodies, for both nonlifting and 
lifting situations. It confirmed in depth the initial conclusions of 
references 9 and 10 regarding the accuracy of the local linearization 
method as applied to slender axisymmetric shapes and, in addition, 
demonstrated the capability of the transonic equivalence rule (1) to 
account for change in flow properties on the surface of slender bodies 
due to moderate nonaxisymmetric effects of body shape and lift and (2) 
to predict transonic flow-field properties at field points removed by 

moderate lateral distances from the body surface. In addition, an 

application was made to two simple wing-body combinations (see figs. 20 
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and 21, ref. 3) having zero thickness wings in order to demonstrate the 
present capability of these techniques. 

The current study extends the work of reference 3 to include several 
general classes of more complex wing-body combinations, in which the wings 
have finite thickness and the bodies are area-rule indented so that the 
resultant equivalent bodies remain smooth. Both the axisymmetric and 
nonaxisymmetric body shapes studied in reference 3 are considered. In 
addition, axisymmetric shapes having bumpy and indented midsections are 
studied in order to assess the applicability of the method to finite 
thickness wing-circular body combinations for which the actual body is 
smooth but the equivalent body is bumpy. 

While the ultimate goal of the present investigation is to develop 
computational techniques for the prediction of the flow field, pressure 
distribution, and aerodynamic characteristics of three-dimensional, 
lifting, wing-body combinations, the purposes of this study are (1) to 
apply the local linearization method together with the transonic equivalence 
rule to various classes of wing-body combinations for which the equivalent 
body is smooth in order to examine the effectiveness of the theory to 
these classes of shapes, and (2) to apply these same techniques to axi- 
symmetric shapes having bumps (or indentations) in order to assess their 
applicability to finite thickness wing-smooth body combinations for which 
the equivalent body is bumpy. 

3 
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ANALYSIS 

General Considerations 

For all of the three-dimensional flows considered herein, the 
analysis presented is expressed in terms of a body-fixed Cartesian co- 
ordinate system centered at the nose with the x-axis directed rearward 
and aligned with the longitudinal axis of the body, the y-axis directed 
to the right facing forward, and the z-axis directed vertically upward 
so that the x-z plane is a plane of symmetry of the body and in the 
case of a wing-body combination, is perpendicular to the plane of the 
wing, as shown in figure 1. For lifting situations, the free-stream 
direction is taken to be inclined at any arbitrary small angle a to 
the x axis but confined to the x-z plane so that there is no side- 
slip. With the assumption that the configurations under consideration 
are such that the resulting flows can be adequately treated within the 
framework of inviscid small disturbance theory, the velocity v can be 
expressed as the gradient of a potential 0 which may, in turn, be 
related to a perturbation velocity potential @ according to 

(ref. 11) 

O(X,Y,Z) = Uoo(x + az) + Q(X,Y,Z) (1) 

where U m represents the free-stream velocity, and CL the angle of 
attack. The governing partial differential equation for o is given by 

(1 - M;) Gxx + Gyy + Gzz = 
Mz(y + 1) 

UC0 @x @xx (2) 

and is invariant with respect to small rotations of the coordinate 
system. Consequently, the differential equation applies whether the 
x-axis is parallel to the direction of the free stream, as in most 
cerivations (refs. 12, 13), or inclined a small angle to it as in the 
present applications to lifting configurations. The expression for the 
pressure coefficient C is not invariant and in the above reference 

P 
frame is given (ref. 11) 

P-P, 
C = - = - $- (@, + a$$ - 1 b#$ + $;I 

P 1 5 P,UZ m % 
(3) 
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The boundary conditions require that 

Y, = iU, + kaUm 

far from the body, where i, j, and k are unit vectors parallel to the 

x3 Y, and z axes, and that the velocity component Vn normal to the 
configuration be zero at the surface. Thus, the boundary conditions 

for the perturbation potential 6 for configurations consisting of 
slender bodies and thin wings are (ref. 11) 

G(m) = 0 

[ 
UC0 (nl + an31 + en 1 = 0 

surface J 

(5) 

where A n = Fn 1 + 9n.s + 
QnZ 

is the unit normal to the surface and 

nl, n2, and ns are the direction cosines of f with respect to the 

x> YY and z axes. 

Transonic Equivalence Rule 

The transonic equivalence rule first proposed by Oswatitsch 
(ref. 14) for flows past thin nonlifting wings, and later extended to 
lifting wings (ref. 15) and slender wing-body combinations of arbitrary 
cross section (ref. 11) provides an important means for studying a 
complex transonic flow by reducing it to a number of component flows 
more easily evaluated. The rule was used with great success in reference 
3 and will be briefly described here. For more details, references 3, 
11, 14, and 15 should be consulted. Specifically, the rule relates 
the transonic flow around a slender configuration of general cross 
section to that past an "equivalent" nonlifting body of revolution 
having the same distribution of cross sectional area. Figure 1 
summarizes the theoretical essentials of the equivalence rule and also 
indicates one of the more important results of slender body theory which 
states that in the neighborhood of a slender body the perturbation 
potential $ is approximately of the form 

@ = @*(X,Y,Z) + g(x) (6) 
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where &, is the solution of Laplace's equation 

(@2)yy +(&.I =o (7) 
zz 

for the given boundary conditions in the yz plane at each x station, 
and g(x) is an additional contribution dependent upon M, and s (xl 
but not on the shape of the cross section. It is thus possible to 
determine g (4 from the solution of the simpler problem of nonlifting 
axisynunetric flow at the same M m past the equivalent body. 

It is convenient to express the equivalence rule mathematically 

G = Q2,u + G2,t - G2,B + @B (8) 

where @2,u, @2,t, and @2,B are solutions of the two-dimensional 
Laplace equation as shown in figure 1. Hence, $2 a is the two-dimensional , 
incompressible flow solution for the translation of the cross section 
(lifting problem), Q2,t the corresponding solution for expansion (or 
contraction) of the cross section (thickness problem), and b,B the 
solution for the expansion (or contraction) of a circular cylinder having 
identical cross sectional area. Finally, oB is the three-dimensional 
solution to the full transonic equation for the equivalent body of 
revolution. The order of error inherent in the equivalence rule has been 
established in reference 11 and it appears that the rule ought to be 
applicable to wings to greater aspect ratio at Mm = 1 than at any other 
Mach number. 

With the solution for $I in hand, the pressure distribution on 
or near a slender body of arbitrary cross section is provided by 
equation (3). This result may be integrated to obtain the total forces, 
including lift and drag, and moments for these configurations. Since 
the aerodynamic loading, lift, and all lateral forces and moments are 
expressed in terms of differences in pressure between pairs of points 
at the same longitudinal station, these quantities depend only on o2 
and not Mm, and therefore can be calculated by using linearized slender 
body theory even though M, = 1 (ref. 3, 16, 17). 

Local Linearization Method 

The original derivation and application of the local linearization 
method to axisynunetric flows about slender bodies of revolution is described 
in references 9 and 10. 11 



The more detailed and extensive application and experimental com- 
parison of the method carried out in reference 3 reinforced those initial 
conclusions regarding the accuracy and versatility of this technique as 
applied to smooth slender bodies. As shown in reference 9, the method 
provides the following results for the perturbation velocity component 

u/u, on the body surface. For purely subsonic flows 

= 9 ln (1 - M2 - ku) m 

a 

* In ,,Flx! 1 
x) +-G / 

S" x ) - S" (E) 
d5 I” - El 1 (9) 

0 

for purely supersonic flows 

d u 
dxK 0 

= 9 In (M2 - 1 + ku) 03 

x +A& KylnsM+~ 
[ / 

S” x ) - S”(E) 
4 dS 

4axs x- 1 
0 

(10) 

and for accelerating transonic flows with M, = 1 

d u 
0 

= S'(x)S"(X) M$ - 1 
dxU, 4aS(x) Mz(y + 1) 

Mz(r + l)S(x)eC X 

- * ln 1 
I 

S" x 
-4a 

) - S"(,t) 
47rx x- 4 

(11) 

0 

where k in equations (9) and (10) is equal to Mz(y + l)/Um,C in 

equation (11) is Euler's constant ~0.5772, S(x) represents the area 
distribution, and primes indicate differentiation with respect to the 
appropriate varianle. These differential equations have been programmed 
for rapid computation in reference 3 where all details regarding starting 
conditions, numerical techniques, accuracy, limitations, etc. are provided. 
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Wing and Body Geometry 

Because experimental verification of the theory was considered 
essential, primary attention was directed in reference 3 toward shapes 
for which data (refs. 18, 19, 20) was available. 

Consequently, all of the axisymmetric oodies, or in the case of 
nonaxisymmetric bodies, the "equivalent" bodies of revolution considered 
in reference 3 have profiles described by the equations 

0 
11 

0 
1 i/(n-1) 

d, =n 
max 

0 0 
L l/(n-1) 

‘R =‘- n max 

(12) 

(13) 

(14) 

(15) 

with n = constant> 2. Since the theory and the computer programs 
developed in reference 3 are used as a starting point for the present 
work, the classes of wing-body combinations examined in this report 
consist of bodies indented at the wing junction so that the total cross 
sectional area distribution (i.e., body plus the wing) remains identical 
to that of smooth bodies having the profiles described above. There- 
fore, the wing-body combinations considered herein are composed of 
indented bodies derived from the two basic types of smooth body shapes, 
i.e. 

l Bodies of revolution having R - x/,4 - (x/l)" or 
l- x/a - (1 - x/a)" 

l Parabolic-arc bodies having elliptic cross sections which 
maintain a constant ratio h(= a/b) of major/minor axes 
along the entire body length 

13 



These classes of body shapes are illustrated in figures 2 and 3 on typical 
wing-body combinations together with the general class of wings to be 
studied. The wing planform consists of symmetric straight leading and 
trailing edges, swept at arbitrary angles Bje and B,, respectively, 
to the y axis. Tne positions of the leading and trailing edges of 
the wing root-chord are at arbitrary locations X 

r&e and Xrte along the 

body axis. The wing profiles are taken to be of the same class as the 
airfoils studied in references 3 and 21 SO that in terms of the local 
chord, cw, and the distance from the leading edge, x, they are represented 
by expressions of the form 

or 

(16) 

(17) 

where m is a constant1 2. In addition, the wings are assumed to 
maintain a constant thickness-to-chord ratio across the span, with the 
consequence that the wing profiles at all spanwise locations are 
geometrically similar. 

Finite Thickness Wing Circular-Body Combinations 

The ingredients necessary to solve, byusing the method of local 
linearization and the transonic equivalence rule, lifting transonic 
flows past wing-body combinations having the above classes of bodies are: 

1. Solution of the two-dimensional Laplace equation describing 
growth of the cross section. 

2. Solution of the two-dimensional.Lapalce equation describing 
translation of the cross section. 

3. Solution of the two-dimensional Laplace equation describing 
growth of the equivalent area circular cylinder. 

4. Solution of the nonlinear transonic equation for nonlifting 
flow past the equivalent body of revolution. 

14 



The solution of item (3) is represented by a two-dimensional source 
located on the x-axis whose strength is related to the first derivative 

of the equivalent area distribution. Thus, 

UrnSAb (x) 
@2,B = 2,,. In r 

Since the previously developed computational programs (ref. 3) 
provide the local linearization solutions for QB (item 3), it remains 
to calculate a2,t (item 1) and Q2,a (item 2) for the particular wing- 
body configurations described above. 

Thickness problem.- While no previous theoretical work is available 

on the thickness problem for finite thickness wing-body combinations at 
transonic speeds, the work of references 22, 23, and 24 concerned with 
supersonic slender-body flow is, nonetheless, applicable to the present 
problem. In particular, the method developed by Stocker (ref. 24) is 
most directly related to this study. That technique is based upon the 
method of singularities and models the wing thickness by placing a con- 
tinuous distribution of two-dimensional incompressible sources (or sinks) 
along the wing chordal plane together with their appropriate images within 
the circular cylinder. The body is, of course, represented by a source 
(or sink) at the origin. 

I S I 

The method is a powerful one and applicable to a wide range of configu- 
rations. It provides the following expression for the complex potential 

W,,t(x,Y,z): 

15 



W2,t 1 dZ,(x,E) -=- Urn -IT dx 
Rb 

where c is the complex variable in the crossflow plane 

o=y+iz (20) 

s; (xl is the first derivative of the cross sectional area Sb(x) of the 
body, i.e. 

Sb(X) = yyx) (21) 

and 
dZw (x,y) 

dx is the first derivative in the longitudinal direction of 
the wing ordinates Zw(x,y). Since the equivalent body area distribution 
and the actual body area distribution are related through the expression 

S 

SebW = SbW + 4 
I Zw(x,~) dy 

53 

(22) 

we can write the alternate form 

(a2 
In 

1 
+2a S;b(x) + 4 Zw(x,RD) 

d% 
dx 1 In 0 

Tne velocity components associated with this flow are given by 

&2 t 
u2,t =A=Rp 

aw2,t 

F3X 
- . 

ax 

(23) 

(24) 

dW,,t 
(v - iw), t = - , da (25) 
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where @2,t represents the velocity potential and R.P. signifies 
the real part of a complex function. 

Although the above expression for W2,t is quite compact, the 
resulting expressions for the velocity components are not. Because the 
evaluation of each velocity component generally involves the determination 
of at least one integral, care must be taken to assure proper treatment 
of the familiar Cauchy singularity that appears on the wing surface in 
several of these integrals. In addition to those singularities, the 
junction of the wing and body also requires special treatment since at 
those points the velocity components are continuous but their derivatives 
are not. 

It is convenient to restrict attention to points located in the 
first quadrant of the crossflow plane (Y20, z20) since from the 
assumed symmetry of the wing-body configurations we have 

u2,t(x,-Y,Z) = u2,t(x,Y,Z) 

v2,t(x, -y,z) =-v2,t(x,Y,Z) 

w2,t(x,-Y,Z) = w2,t(w,z) J 
and 

u2,t(x,Y,-2) = u2,t(x,Y,Z) 
i 

v2,t(x,Y,-2) = v2,t(x,Y,Z) 

1 

(26) 

(27) 

w2, t (X,Y,-z) = -wz,t(x,y,z) J 
With this in mind, the following results are provided by equations (23), 

(241, and (25). 

For a point at any general location but not on the wing surface, 

17 



U 
2at 1 -=- 
x3 2n X 

,h?n 
C 

[z2+ (Y-02] [ z2+ (y++J z2+ (y-Y)2][ z2 + (y + 

( 
22 + y2 

) 

4 

y,q dE, 

1 

53’ 
y+- 

32’ 

1 dE 

+ 
dZW(x, s) 

dx 2X 

22 + (y - s)2 22 + (y + s) 2 z2+ (y- 
Ln 

c[ 

I[ IC 
?I q&2 y- 'yT + ?I 21 

( 
22 + y2 

> 
4 

I dZw lx, F$,) ds [ z2+ (y - 
-2 

%12]f z2+ (Y+q2] 
dx dx &n 

( 
22 + y" 

> 
2 

(2.8) 
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- ” 

y= q dzw::a4) [,.J,;_',,. + z2+Y(;+Et)2 + y - 3 
22 + (y - - 2 

4 ) 

%’ 
+ 

Y+T 

%' z2+ (y+- 2 
4 ) 

1 s&,(x) 
de+ 2 

+ 2 zw(x,q (29) 

1 + 1 + 1 

z2+ (y-z)2 z2+ (y+4j2 ?b' z2+ (y-- 2 
4 ) 

+ 1 

%' 
1 dE,+ z 

SLb (xl 
22 + y2 

dE,+ 2 

22 + (y + - 2 
4 ) 

+ 2 Zw(x,Rb) yg- (30) 

For points on the wing surface but not at the wing-body junction, 
i.e. z = 0, and s<y<s: 

(y+ 412 (y-l-- 
In 

Y4 
dE 

+ ’ d2Zw(x,4) 
J( %I dx2 

d2z~~~yy')~n[(~)2] dE, 

(Continued on next page) 
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d% 1 +4s-- 
dx Y 

S 

dS - 

% 

> 
z-%2 

Y 

-i- 2 
d2Zw(x,y) 

dX2 ((s-YJ[Jn(~)-~]+ ty-Rd[Jn(*-I]} 

dx2 L 

-I- 
dZw(x,4 ds 

dx dx jn [ 

%' 
(s-y12 (sty)2 (y-- s J2 

%’ 
(ys32 

YS I 
- ;’ 

dZw(x,~) ds (Y-Q2 (y+ RJ2 
dx dx an 

Y4 I 
+c”“‘;‘“’ + 2[( dzw’dx:%’ + dzw(dx;%) 2)+ zw(x,Rb) 2 
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- -. 

dZw(x,y) 
dx 

+ 
SLb (xl 

2 + 2 ZwC”,Rb) yjy (32) 

w2 t 
2 = 

dZw (x,y) 

Ocu dx 

And for points along the wing-body junction, i.e. z=o,y=s 

u2,t 1 -=- 

ucc 2lr 

%’ 2 (Rb+E12 cRb + -y-l 
k?n 

33' 1 dS 

+ 

(33) 

(Continued on next page) 
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d% 
s dZw(xL) 

[/ 

s dZ,(x,U 
+4dx / 

c dx - dx 

53 ?b +Rb 
dS I 

f 2 

-4 

33’ 52’ 

+ 
dZw(x,s) 

$$ &n 
(s-q2 (s+q2 ‘~--q-F ‘3p-32 

dx 
%” 

I 

{ 

S 
v2,t 1 - = - 

UC0 / 

hb 

d’s + z~(x,~) d~2 

11 1 

h(s2) 

dZw(x,t) 
dx 

1 
Lb 4 + + 

53’ 

(34) 

+ 

SAb (xl 

dS+ 2 + 2 Zw(x,Rb) (35) 



w2,t dzwbq’$,) -= uac dx (36) 

It is clear from these expressions that, except for the very simplest 
wing profile shapes, analytical evaluation of the thickness velocity 
components is not possible and numerical means must be resorted to. 

Liftinq problem.- The cross flow problem for lifting flows at small 
angles of attack a about wing circular-body combinations has been studied 
previously, for example in references 25 and 26. The complex potential 
describing the downward translation at a constant rate Uma of the wing 
circular-body cross section shown below 

is given by 

w2,a = -iU,cz C C %’ 
(a + y2 - (s + +] 

where it is assumed that the wing thickness is suffic 

/2 
- u 

I 
(37) 

ently small that 
the boundary condition on the wing surface can be satisfied on the y 
axis, i.e. at 2 = 0. The velocity components associated with this flow 
are found by operations similar to those used for the thickness problem. 
Thus, 

u2 a 
) = R.P. 2 [( ( c - ia 

u+$) 32 u - (s +$) %]d%- (S 
S S dx 

Ucn 
% % 

I 

l/2 
(a + 0” - (s + -g-)2 

(36) 
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(v - iW),,a 
[ 

(a+ 
um = -ia 

5, (1-S) 
-1 

I 
(39) 

[ 
% % (a+-$2 - (s +y 1 l/2 

where, unlike the thickness case, no distinction is necessary between a 
general point and points on the wing surface or at the wing-body junction 
since the velocity components contain no Cauchy singularities and are 
uniformly continuous at all points (except, of course, at the familiar 
square root singularity at the wing tip) in the flow field and at the 
solid boundaries. For these flows, the velocity components possess the 
following symmetries: 

“2,a (x,-y,z) = -v2,a(x,Y,z) 

w2,a(x, -y,z) = W2,a(X,y,Z) 

and 

v2,-Jx,y,-z) = -vz,a(x,YG) 

(40) 

(41) 

Wz,a(X,Y,-Z) = w2,a(x,Y,z) 

Aerodynamic characteristics.- Because of the symmetry of the class of 

wing-body conibinations considered herein, nonlifting flows produce no 

lateral forces or moments. Thus, the only force will be the longitudinal 

drag force which can be determined through the general formula, 

PC0 &2 t a@2 B 
D =D 

a=0 eb - 2 b,t -$y- dot - @2,B .+-- dog 
> 

(42) 

CB 
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where D eb represents the drag of the equivalent body while the other 
two terms involve the line integral along their respective contours 

cct is the contour defined by the cross section of the wing-body 
combination while cB is the contour about the equivalent area circular 
cylinder) of the product of the appropriate velocity potential and 
the normal velocity associated with it. We note that the drag indicated 
by equation (42) refers to the inviscid drag of the configuration minus 
the base pressure drag. As pointed out in references 1, 2, 3, and 11, 
there exist many shapes of aerodynamic interest for which the two integrals 
involved cancel. In particular, we note that if the equivalent body and 
the original body have the same shape and surface slope at the base, as 
is the case for the configurations studied here, then since both integrals 
are carried out over the same contour along which G2,t = @2,B and 

a@.?, t/an = a@2 ,B/a", the integrals cancel and Daze = Deb. If we define 
a drag coefficient CD based upon the maximum cross-sectional area of 
the equivalent body, Sm, we have for the body shapes described by 

equations 12 and 14 that 

'rn "'zb 
IF-=- 4 

and so 

D xb 

CDeb = P, 
eb 1 =- 

2 '2 sm 
'rn / 

C 
P 

S;b(x) dx 
0 eb 

where C 
'eb 

is defined by the formula 

C 2uB --- 
P = urn eb 

(43) 

(44) 

(45) 

For the lifting situation, an exact analysis of the aerodynamic 
forces and moments, even within the framework of small disturbance theory, 
becomes quite formidable. The general formulas for determining the 
coefficients of lift, pitching moment, and drag are given by 

L 
CL=- 9 @2,a dot 

C 

(46) 
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cm = .-%v= -’ &o’ sm. .e 
I 

X+.$&~ 
0 

Dt 
D eb 1 a$2 a aG2 t 

'Dt=q=F-- 
mm smuc3 @+,a an &dcr + 

C Qz,t -& dot 
C 

4 &z,B 
@‘z,B ali 

B 

(47) 

(48) 

where now the contour C, while still taken at the base of the body, must 
now account for the vortex wake which springs from the wing trailing 
edge and, as before, the drag given by equation (48) represents the 
inviscid drag minus the base pressure drag. Because the vortex lines 
near the body surface must follow the streamlines of the flow around the 

body, the vortex wake will not proceed parallel to the x-axis, in 
general, as it does in many simpler cases considered in slender body 
theory; but will move away from or toward the body axis to follow the 
lateral expansion or contraction of the flow field near the body as 
shown below. 

vca 

Point of maximum span 

vortex wake 
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The resulting flow at the body base is influenced by the wake and, 
consequently, is no longer indepehdent of the flow at cross sections 
preceding it. The solution of problems of this type, is discussed 
briefly in reference 27. In general, they are quite difficult to solve 
and since they are by no means unique to transonic slender body flows, 
their exact solution is clearly beyond the scope of the present investi- 
gation. Because the analysis presented here, however, remains valid 
up to the point of maximum span (i.e. as long as the edge of the wing 
remains a leading edge) a rouqh estimate can be made of these quantities 
by making the assumption that beyond the point of maximum span Xsm 
the vortex sheet remains parallel to the x-axis and does not vary with x. 
With this premise in mind, we can proceed to evaluate equati.on (46) 
for the lift by replacing @2,a by Wz,a, carrying out the complex 
integral along the cross section at x=x sm' and then taking the real 
part of the result. Care must be exercised in carrying this out however, 
since as pointed out in reference 28 direct replacement of &,a by 

w2,a = G2,a + i+!~a,~, while reducing the problem to one of evaluating a 
closed contour complex integral, will generally lead to a spurious 
result unless the stream function $a a , happens to be zero or a constant 
along the cross section contour. 

This point seems to have been overlooked in references 29 and 30. 
Introduction of the potential d:b, f or the related flow having zero 
normal velocity at the contour and a velocity component at infinity pro- 
portional to the angle of attack avoids this problem. Thus, 

@2,a = R.P. @A:;) - azUm 

where 

w$&d = , -iUma 
1. 

% (s+--$2 - 

(49) 

(50) 

Hence, 

(51) 
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These integrals are readily evaluated (see ref. 24 for details) providing 

the result that 

lx=x sm 

or by using equation (22), 

x=x sm 

With this result the pitching moment can be determined in a straight 

forward fashion. First, integrating equation (47) by parts, we have 

sm 
cm = 

(52) 

(53) 

(54) 

or 

X sm %i + (s2 + 52 - Reb 2 1 dE 
3 

x=x 0 
sm 

(55) 

where it is understood in the integral that until the wing leading edge 
pierces the body surface, i.e. until x=x reel (see fig. 2), s = Rb = Reb, 

so that 

- kEb 

)I 

X 

I 

r&e, 
+ R',b dE 

0 

Ix = Xsm 

(56) 
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As far as the drag is concerned, the first term in equation (48) is 
simply the induced vortex drag associated with lift and is given by 

(ref. 11) 

Di=$jL (57) 

Consequently, if the thickness and lifting drags can be considered indep- 
endently we can use the result first stated by Ward (ref. 29) that 

'Dt = 'D a=0 
(58) 

where the drag coefficient at zero lift is given by equation (44). 

Finite Thickness Wing Elliptic-Body Combinations 

The analysis of wing-body combinations comprised of parabolic- 
arc bodies having indented elliptic cross sections such that the total 
cross sectional area distribution (i.e., body plus wing) equals the 
area of the original smooth body with elliptic cross section proceeds 
in a manner analogous to that of the circular body shapes. Because the 
solutions to the nonlinear transonic equation for nonlifting flow past 
the equivalent body of revolution and the two-dimensional Laplace 
equation describing growth of the equivalent area circular cylinder are 
again known, it remains to determine the potentials W2,t and W2,a 

of the respective thickness and lifting problems. The most direct tech- 
nique for determining these potentials consists of reducing the elliptic 
cross section to a circular one by use of an appropriate Joukowski 
transformation and then applying directly the preceding methods developed 
for the circular shapes. 

Thickness problem.- The transformation of the elliptic cross section 

into a circular one is accomplished through the following relation; 



where 

and 

Th .is takes the ellipse into a circle of radius 

~2 = a2 - b2 

Ul = y1 + lZ1 

R, = (a + b) 
2 

and the semispan s into the shortened semispan 

(59) 

(60) 

(61) 

(62) 

s + v s2 - c2 s1 = 
2 (63) 

Consequently, with reference to equation (19), we can write the complex 
thickness potential W2,t in the transformed u1 plane, as 

W2,tW 
Sl (al2 - 

u, = I 
F(S1) In 

s; (xl 
d51 + 7 In ur 

Rl 
(64) 

where the source distribution F(t1) must be related to the boundary 
condition on the wing in the physical plane, i.e. 

wz,t(x,YA dZw(x,y) 
= 

UC0 dx a<y<s (65) 

Now since 

(v - iw),,t dW,,tkQ da, 
= 

UC0 do1 da (66) 
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we have 

lim 
z-o 

dZw(x,y) 
dx a<y<s (67) 

Inserting equation (64) into equation (67), carrying through the 
indicated operations, and taking proper account of the Cauchy singularity 
we find that 

F(E1) = + (68) 

Hence, by using equation (22) the expression for W,,t becomes 

W2,tW 1 
C2 

‘l dZw(x,fl + 42) (rS12 

u, =TF i 
In 

-412) (U12 -4 

dx 4 

Rl 
01 

""] k - 6) de, 

In ui (69) 

Equation (69) could be now transformed back into physical variables; 
however, in evaluating the individual velocity components it is more 
convenient to retain the present expression. 

The longitudinal velocity component of this flow is given by 

u2,t = R-P. * (70) 

and the lateral components by equation (66). 

As before, the appearance of the Cauchy singularity on the wing 
surface, and the discontinuity of the derivatives of the velocity 

components at the wing-body junction require that separate treatment be 
given to these points. Because the symmetry properties stated by 
equations (26) and (27) remain valid for these shapes, we will restrict 
attention to points in the first quadrant of the crossflow plane. 
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If we define the following quantities 

ql + iq2 = 
1 

2 C2 
01 -4 

q3 + i94 = 

2 C2 
01 -4 

q5 
01 

2 

iq, = 
2 C2 

01 -4 

then equations (66), (69), and 
a point at general location but 

70) provide the following results. 
not on the wing surface, 

(71) 

(72) 

(73) 

For 

dx2 

12 + (y1-z1) 2 Z12 + (y,+z,) 2 212 + (Yl - x 

(212 + Y12j4 

(1 - -+ dt, 
4512 

Sl 

/ 

C2 
dZw(x,tl + 4~1) 1 d41 

- cl6 7-1 dx CT 
Rl =1 2+ (Yl (Continued on next 

paqe) 
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Sl 

Sl 

+ 96 =1 / 
dZJx,& + 4 ;2 1 

dx 
Rl 

ZY 

dE1 

R2 1 
21 2 + (y1 +-L-l 2 

41 

dZJx,Sl +&I 

dx de.1 
% 

C2 

+ q4 =1 
dZw(x,tl +& 1 dS, 

dx 
% 412 

=1 2 + (Yl 

C2 

+ q3 
dZJx,tl +& 1 (Yl +- ";:, 

dx de1 

Rl 412 
=1 2+ (y1+ 

C2 

+ q-5 =1 

dZJx& +-@ 
dx 4'1 

1 dS1 

41 
2 

% Z12 + (y1 + 

+ 
dZw(x, s) 

dx f&x (Continued on next page) 
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R2 
=1 

.h 
c’ 

Z12 + (s1+ Y112 =I2 + (Yl s1 2+][ R12 
q2 + (Yl +g 

(q2 + Y1214 9 

dZw(x,a) =12 + (~1 - RI) 2 =12 + (yl + 
-2 dx 2 h 

(q2 + Y1212 

+ 
C 

S& (xl 
+ 2 2 . 

+ ZLvi(x,a) d2a - h(z12 + y12) 
dx2 

C2 
dZw(x,51 + 4~1) Yl -41 y1+41 

dx + 
=1 2 + (Yl -4112 =12 + (Yl +41j2 

+ 

Sl 
SC) 

1 
+ q6=1 I dzJx,L + 4e1 

+ 1 
dx 

Rl 
z12+ (y1 -4112 =12+ (y1 +=,I2 

(74) 

%iYl + q,=1 + S& (xl 
de+ 2 

da 

2+Y12 
+ 2 Zw(x,a) dx (75) 

=1 )! 
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C2 
dZW(x,El +@ 

dx 

+ 
Yl - y- 

'l+* 

y2j2 + z12+ (yl +$2 q2+ (Y1-- 

](I - s)dEl 

r Yl - 41 Yl + 41 

L Z12 + (Yl -4112 -=12 + (Yl +4112 

Sl 

I 

C2 

+ q5=1 
dZ"(X'el+q) 

dx 
4 

1 
+ 

1 
=I2 + (Yl -q12 212 + (Yl + =1) 2 

1 
+ I ’ ] (’ - ---&Xl 

=1 212)2 + z12+ tyl ++ 2+ (Y1 -- 

q,=1 
+ - %Yl S&(x) 

dt+ 2 + 2 zw(x,a) (76) 
=1 2 + Y12 

For points on the wing surface but not at the wing-body junction, 
that is z = 0, a<y<s (or equivalently z1 = 0, R, < yl < sl), 

C2 R12 

U2.t A 1 d2zW(x& +-) 
u, =2p 

4El .L?n 
(Y, + 41)2(Yl + p2 

(1 --*) dcl 
dx2 Y14 4512 

Sl 

+ 
d2ZW(x,41 + $ J( d2ZW(x,y1 +c 

RI 
dx2 dx" 

"3 .k[(Y1il'g2] c-s>dEI 

d2Zw(x,R1 f- 

dx2 
“l> .&[I’ ;FT] (+---$$)d(l 

(Continued on next page) 
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+ 

d2ZW(x,R1 + 4R 

dx2 
':) 2[sl ln f ;F)- R, &-, cl;?) 

Rl 
2 

- y1 k?n 

+ 
SLb (x) 

2 
+ 2 Zw(x,a) 

Sl 
+ 

/ 
Rl 

C2 dZw(x,cl +-I 
dx 

dS1 
Rm2 3 

41 +* 
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c2 q 
+-;?-2 

% 

Z”(X,41 + g-J dZw(x,R1 

dx dx 

RI 
2 

41 - - 
Yl 

dC.1 

Sl 

“I- 
dZw(x,L +-&I 

+ 
dx Rl R12 

de1 II 41(41 +y1) 
Rl 

2 
RI 

2 

+ 
dZw(x,s) 

2 an 
(Sl -Yl)2(sl +y1)2(y1 -yj2(y1 +--)2 Sl 

dx 
Yl 

8 3 

dZw (x, a) da -R,)'(yl + R,j2 4 a 9, 
+ dx dx h in 

-(f+-)2. a.q3 .,I?,<?)} 

+rgbi"' + 2[(dzw~~'a' + dZw~~'a) 2) 2 + Zw(x,a) z]>Pn(y12)} 

(77) 
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V2t 9, 1 
C2 

A 
u, =F- 

dZ"(X,L + 4E1' 

dx 
Rl 

2 

Yl+yy- 

RI 

dzW(x,yl +&, 

Sl 
1 +- 

Yl / 
Rl 

Sr 

zw(x,& +E), 

dx 

R12 
41 -y1 

C2 
Rl 

2 

+ 
dZw(x>R1 +K) 1 

Y, 
C 

Sl -RI+- 
Yl 

Skb (x) 
dE,+ 2 + 2 Zw(x,a) (78) 
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w2 t 2= dZw (x,y) 

%3 dx (79) 

and for points along the wing-body junction, i.e. z=O,y=a 
(or equivalently z1 = 0, y1 = RI), 

u2 t 
2 1 

u, =2a 

dZw(x,T;l +& 
dn 

(Y, + s1)2(Y1 +- 

dx2 Y14 
:12"] ( - & de, 

Sl + I Rl 

Sl + I Rl 

+ 5, d2Zw (x, R, + 4~1) 
dx2 

c2) Jn[c,:f)2] 6 - y&) de1 

+&I d2ZW(x,R1 + 4~1) 
dx2 

c2) h[(+)2] c -&) de, 

+ d2ZW (x, R, + 4R1) 
dx2 

c2 2[(s, -RI) [k?n cliIRg - 11 + s1 ~~~~~~~ 

- R, dn 

&n 
Sl 

k? { )I R, 

1 +- 
Sl 

X 
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+ 
s&, bd 

2 

Sl 

I 
dZw(x& + & 

+ dx 
dE.1 

41 +R, I 
RI 

C2 

Sl 

/ 

dZwkL + y@ 

+ dx 
e1 + Rl d51 

RI I> 
RI 

2 

+ 
dZJx, s) 

dx j$ Ln 
(Sl - R,)’ (sl + Rl)2 (RI -+?R1 + 

RI 8 1 

+ 
dZw(x, a) 

dx 

(80) 
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VP t 4, A dZw(x,L +& ( 1 
R,+El + 

1 
u, =7 dx de, 

2 
RI 

RI 
R, +- 

41 

-1 
1 

4 

C2 
Z,(x,41+@ _ dZw(xl,R1 +z 

dx dx 
41 - Rl 

c2 )+ - -&) dt, 

41 
dZw(x,S1 C2 C2 + 4~1 dZw(x,R1 + 4~1) 

1 +- dx dx RI 41 - 4 d51 
Rl 

C2 
dZw(x,Rl +& c2 ~1 -% 

-I- -- 
dx 4 

% - 2s1 

s;b (x) 
dE,+ 2 

da + 2 Zw(x,a) dx 

w2 t L= dZw(x,a) 
U dx 03 

(81) 

(82) 

Liftinq problem.- In order to solve the corresponding lifting problem 
for flows at small angles of attack about wing elliptic-body combinations, 
it is convenient to employ again the Joukowski transformation (eq. (59) 1 
used in the thickness problem. 
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a 

(5 = lJ1+ -$ 
1 f 

w Ucaa 

(51 = 7 l (ul + I&=--& 

In order to preserve the body contour as a streamline in this 
transformation we first solve the cross flow problem for the complex 
potential having zero normal velocity at the contour surface and a 
velocity at infinity proportional to the angle of attack (see eq. (50)). 
In the transformed plane we have 

wp&J,1 , 
urn =- 

ia [ (ol + y)2 Y (Sl + F)2]1’2 (a3’ 

then, by using the above 
the physical plane, 

Joukowski transformation to transfer back to 

UC0 = - la 
02 - c2 + (a+b)2 2 

2 I 2(a+ $F-z-) 

(a + b)2 

2(s+ 76-F 
(84) 

and finally, by adding a uniform free stream Uooa in the negative z 
direction to obtain the desired potential for the wing-body cross section 
translating downward at the constant rate Urna, we arrive at the final 
result 
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The velocity components associated with this flow are given by 

X 
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(v - iW)2,a 

Ucm 
= - ia X 

1 [l- 

(87) 

where again, the symmetry properties stated by equations (40) and (41) 

apply - 

Aerodynamic characteristics.- For the case of nonlifting flows about 
these classes of symmetric configurations, no lateral forces or moments 
exist so that the only force present is the longitudinal drag force. This 
can be determined through the use of equation (42) where now the contri- 
butions of the two line 'ntegrals do not cancel since the contour over 

h2,t which the product @s,t an is evaluated is the elliptic cross section 
at the base of the body whereas the contour for evaluating &‘2 ,B 

@2,B an is, 
of course, the circular cross section of the equivalent body. In order 
to evaluate the integral over the ellipse, we require the potential for 
flow caused by an expanding (or contracting) elliptical cross section which 
maintains a constant ratio h = a/b of major to minor axis. This is 
given by (ref. 30) 

-Y 
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Now, it can be shown that 

UmSLb (xl 
= In 

1 
a(h + 1) 

29 2A 1 (89) 
I surface L J 

@2,t 

I 

ums;~cx) h os28 + h2 sin28 
an 

= 
2n a cos29 f A4 sin28 (90 

lsurface 

r(e) = a 
(91 

cos28 + sin2B 

and since 

/ 
aG2 t 2a 

b,t + dot = / 
b2 t 

@2,t yg- r(e) de 
0 Ct 

(92) 

we find that 

I Q2,t 
?k& da, = (ums$(x))B ; ln [ a0\2+h “1 K (T) (93) 

C 

where K(t) is the complete elliptic integral of the first kind 
(ref. 31). 

a@2 B 
To evaluate the line integral of $2,B + we can simply place 

A= 1, a= Reb in equation (93). Thus, 

/ @2,B 

cB 

$y$ daB = ~ms~(x))2 271. In (Reb) (94) 
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so that the drag coefficient of this general class of nonlifting elliptic 
body combinations is 

CD = CD 
a=0 eb 

-&(Shtr))2 2[$ln($$&K(~>-rlnKeb] 

(95) 

where 
cDeb 

is the drag coefficient of the nonlifting equivalent body 
and is given by equation (44). 

For lifting flows at small angles of attack about these configurations, 
if we apply the same assumptions regarding the trailing vortex wake as were 

made for the circular body case, then the evaluation of equations (46), 

(47)) and (48) provides the following results for the lift, pitching 
moment, and drag coefficients. 

CL = $f(f+ q=)‘[1+ (s+ ;&-)2+ ~s+;+AJl - qi x=x sm 

(96) 

+ < +a;&$] - ‘:i-) lx = x + A %‘le’ ‘zb cx) dx 
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f- 

sm 
s+ 

K xl 

S2 

2c2 2 
-c22 1 + 

X N (s + T/=iKTq 
rle, 

2 + G + y&J”] - GJ+ 

(97) 

'Dt= 'D a=0 
+ f CL (98) 

where CD is the drag coefficient at zero lift and is given by equation 

(95) - 
a=0 
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Bumpy and Indented Bodies 

In order to evaluate the extent to which the present techniques can 
be applied to configurations composed of finite thickness wings and smooth 
rather than indented bodies (so that the equivalent bodies are bumpy), 
the final application of this study is toward shapes having a bump (or 
indentation) superimposed upon on an otherwise smooth body profile. Since 
shapes of this category have been studied experimentally in reference 32, 
attention will be directed primarily toward parabolic-arc bodies having 
a sinusoidal bump (or indentation) superimposed upon their midsections. 
The equation of the bump is given by 

(99) 

where x1 and x2 represent the axial locations of the start and end of 
the bump. While the total area distribution s (xl and its first 
derivative S'(x) are continuous at sll points on the body, the second 
derivative S" (x) is discontinuous at x1 and x2 and this fact must 
be taken into account in the analysis. 

To determine the local linearization solution for this class of 
body shapes, it is convenient to split the area distribution s (x) into 
two parts, i.e. (1) a contribution from the basic body s(x) and, 
(2) a contribution from the bump, AS(x). This is done both to facilitate 

numerical evaluation and also to exhibit clearly the effects of the 
bump. Since the basic bodies are parabolic-arcs, the two area distri- 
butions are given by the expressions 

S(x) = ?Jz 
2 

(100) 

O<X<Xl 

AS = TT (2R AR + AR2) Xl L x 1. x2 

1 

(101) 

0 x,<x<h J 

where x is given by equation (12) with n=2 and AR is given by 
equation (99). 
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The technique of applying the local linearization method to axisym- 
metric shapes is discussed in detail in reference 9 and can be summarized 
briefly as follows. For the purely subsonic and supersonic cases, the 
total coefficient of the quantity $xx in equation (2) is replaced by 
a positive constant A. Thus, for subsonic flows, we have, 

h E 1 - Ma2 - 
Mm2 (y + 1) 

UC0 @X 

while for supersonic flows, 

A s M,' - 1 + 
Mm2(y + 1) 

Urn @X 

Next, the resulting linear differential equation is solved for 4 
then differentiated to obtain the longitudinal velocity component 

u = o,(x,r;h) 

That expression is then evaluated at points on the surface of the 

(102) 

(103) 

and 

(104) 

slender body, giving u&R(x) ;A). The final step consists of differen- 
tiating the surface velocity us assuming that h varies sufficiently 
slowly that its derivatives can be disregarded (this is equivalent to 
assuming that the surface acceleration dus/dx is small), replacing 
h by the quantity it originally represented, i.e. either equation (102) 
or (103),and then integrating the resulting first order nonlinear 
ordinary differential equation for u . For the Moo = 1 case, h is 
taken to replace the coefficient of in the nonlinear term of 
equation (2) rather than oxx, thus 

A= 

The procedure described above would then be repeated in a similar 
fashion. 

(105) 

Starting with the expressions which are valid even for discontinuous 

AS"(x), for the linearized longitudinal velocity component us, for purely 
subsonic flows 
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U a 

s= 1 $1 (f) de 1 AS"(E) d6 
UC0 -4s (x -4)2 + $23’ - = (x--)~ + 5"' (lo6) 

and for purely supersonic flows, 

U 
-SC 1 

x-BQR 

/ 

z(E) de 1 
x-$R 

/ 
AS"(E) de 

UC0 ZG 
0 

V(X-~)~ - @a'R' - ?;Txl V(X-~)~ + fi"aR' 

(107 1 

where 

we obtain the following results valid within the approximations of 
slender body theory. For free stream Mach numbers less than the lower 
critical, M, < M cr,a (purely subsonic flows) 

AS"(x,) ASU (xl) x2 
1 1 

+2n 
1 

(x-x,)' +p2R2 - 2a -((x-x1)2 +p2R2 +2n / 
AS"(x) -AS"(E) 

Ix - 41 dS 
Xl 

+AS”(x))( S@ x ( ) + AS'(x)] 
(x-x~)~+@~R~ 47r(s(x) + AS(x)) 

(109) 

where 

and 

82 E 1 - Mm2 - (y + 1) M,' + 
00 

R=X+AR 

(110) 

(111) 
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and for free stream Mach numbers greater than the upper critical, Mcr u < M, 
, 

(purely supersonic flows) 

FIII(x) -g?(C) Sl (x)SIB (x) 
x- 4 dE + 47??(x) 

0 

(x 1. x + BR) 

AS"(x,) 1 

(X-X~)~ -p2R2 
+z 

AS'.(x) -AS”‘(E) 
x- 4 dS 

X1 

+ Lxp ln SR + (?I' +AS") (s' +AS') 

(x - 47r((s+ AS) 

(Xl + BR < x < x2 + BR) 

0 

AS"(x,) AS"(x,) X 2 

+ 
1 

+27 
AS "' x ( ) -AS"'(E) 

dE 
(x-x~)~ -S2R2 x - 4 

Xl 

(~2 + BR 2 x < L) 

(112) 

where, depending upon the axial location, the various forms of the 
differential equation are necessary to account properly for the absence 

of upstream influence, and where in the last two expressions in equation 

(112) it is convenient to extend AS(x) and its derivatives analytically 

for x > xg. 
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The boundary conditions necessary to start the integration of these 
equations are given by the following relations (see refs. 3, 9) for 
subsonic flow 

u=: 1 

( 
') dE +& 

AS" x 
G 

( ) -AS"(E) 
uco Ix -fl de 

0 Xl 

(x-x~)~+~~~R~ 
atx=x 

S (113) 
(x-x~)~+@ 2R2 e 

and for supersonic flow 

X 

UC 1 

vcu 2TT ‘) dS atx=x 
S 

0 

(114) 

where the starting point xs of the integrations is the positive root 
of the equation 

St8 (x) = 0 (115) 

that is closest to the origin. 

As presently constituted, the local linearization method for deter- 
mining flows at M = 1 m about slender axisymmetric bodies utilizes the 
solution to a parabolic differential equation valid for accelerating 
flows. In order to treat properly regions of recompression or deceleration 
in these flows it is necessary to transfer from the solution determined 
by integrating that parabolic equation to those found by integrating the 
limiting forms (as Mm + 1) of the corresponding hyperbolic and elliptic 
differential equations (see ref. 9). Consequently, to calculate com- 
pletely flows at Mm = 1 about arbitrary slender shapes, transitions 
between the solutions to all three differential equations are required. 
This is illustrated graphically on the two figures below which are the 
experimental surface pressure distributions from reference 32 at 

MC3 = 1 for a basic parabolic-arc body of thickness ratio D/J = l/14 
having a bump or indentation given by equation (99) with ARmax/ = l/70. 
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Shown superimposed upon those curves are the different flow regimes 
according to whether the flow is locally governed by the transonic 
(parabolic, denoted P), the supersonic (hyperbolic, denoted H), or the 

subsonic (elliptic, denoted E) equations. Thus, a prerequisite for 

obtaining the local linearization solution at M = 1 about these m 
classes of bodies is the possession of the corresponding subsonic and 
supersonic solutions. 

For the particular shapes under consideration, however, comparisons 

of the theoretical and experimental results, particularly for the supersonic 
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case, indicates that serious deficiencies are caused by the slender body 
approximations inherent in the present theories. Consequently, the 

discussion of the M, = 1 case will be deferred until the next section. 

RESULTS AND DISCUSSION 

Wing-Body Combinations 

As discussed previously, because the results of reference 3 are to 
be used in the present work as a means of providing solutions to the non- 
linear transonic equation (eq. (2)) for flows about the nonlifting equiva- 
lent body, the wing-body combinations being considered here consist of 
finite thickness wings and bodies which are area-rule indented in such a 
manner that the resultant equivalent body remains smooth. In order to 
provide experimental verification of the theory, a parallel experimental 
program was originally considered for a certain member of the particular 
class of wing-circular body combinations shown in figure 2. This configu- 
ration was to consist of an indented parabolic-arc body having an equiva- 
lent body thickness ratio D/L = l/10 and symmetric diamond planform wings 
with leading and trailing edges swept at the same angle B,, = B,, = tan -1u/2), 
and with parabolic-arc wing profiles having a thickness/chord ratio 

t/cw = 0.04. The root chord of the wing was to extend from x/d = l/3 
to x/e = 2/3 with the result that the entire configuration would be 
symmetric about the body midpoint. That program, unfortunately, has been 
delayed. Consequently, experimental verification of the theory, parti- 
cularly for pressure distribution comparisons which are so vital in 
assessing the applicability of the assumptions of the theory within the 
various regions (body surface, wing surface, wing-body junction, wing 
leading and trailing edges, etc.) of the near flow field of these configu- 
rations, will have to be deferred. While experimental data for transonic 
flows about wing-indented body combinations already exists in the 
literature --for example, references 33 to 40 --the majority of this 
data is for gross aerodynamic properties (lift, drag, pitching moment) 
with very little information available for pressure distributions. Even 
for that small amount that does exist (see refs. 35, 39) there are 
several factors which preclude its use for comparison with the theory 
developed in this report. The most important source of difficulty arises 
from the swept-back nature of the trailing edge of the wings used in 

53 



those tests. As a consequence, a typical wing-body cross section would 
appear in the cross flow plane as shown below 

z 

-CL --Y 

Cross Section 

Planform 

While it seems that solutions to the thickness problem associated with 
this type of configuration have not been given previously, the lifting 
problem has recieved prior attention, for example, in references 41 
through 43. Although the analysis of the thickness problem would require 
some modification of the techniques used here (in order to account for 
the absence of a solid boundary between the body and wing cross sections), 
no fundamental difficulties should arise in its solution. For the 
corresponding lifting problem, however, a significant distinction does 
appear for wings with swept-back rather than straight or swept-forward 
trailing edges. In fact, Mangler (ref. 43) has shown that in order to 
account properly for the vortex sheet springing from the sections of the 
trailing edge ahead of the axial station in question, (even with the 
assumption that the vortex sheet proceeds parallel to the x-axis) the 
numerical solution of an integral equation is required. 

Another factor which hinders comparison of the theory with the 
data referred to above is the magnitude of the aspect ratio of the wings 
tested. It was ascertained in reference 11 that the aspect ratio range 
over which slender body theory can be expected to provide reasonable 
results ought to be greater at Mea = 1 than at any other Mach number. 
In this regard, experimental information is known most completely for 
families of affinely related wings of rectangular planform (ref. 44) 
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and triangular planform (ref. 45). Through application of the transonic 
similarity rules it was observed that wings for which the product of 
aspect ratio times wing thickness ratio to the one-third power is less 
than approximately unity (Arwl" SL 1) , the experimental values for lift 
coincide with that predicted by the theory. This implies, for example, 
that for wings of thickness ratio rw = .04, the aspect ratio should not 
be much greater than 3 for the theory to be valid, whereas for a ten 
percent thick wing the corresponding aspect ratio should not be greater 
than about 2. To the extent that these criteria can be applied to the 
configurations tested in references 33 to 40, it is clear that none of 
that data is applicable. 

In order to illustrate the general behavior of transonic flows about 
the slender wing-body combinations considered, the surface and flow field 
pressure distributions for several members of the classes of configuration 
described previously are given in figures 4 through 9. For example, in 
figure 4 pressure distributions are presented for a finite thickness 
wing-indented circular body combination in which the equivalent body is 
a parabolic-arc of thickness ratio D/d = l/12, the wings are triangular 
in planform with an aspect ratio AR = 2 (so that @,, = tan-i(2), 

B te = 0) and have parabolic-arc profiles of thickness/chord ratio t/cw = 0.04. 
The wing root chord extends from X rLe/.E = 0.25 to Xrte/.! = 0.75 and 
the body base is taken to be at s/e = 0.86 (corresponding to the base 
location of the bodies tested in ref. 16). The longitudinal pressure 
distributions given in figure 4 are for the free-stream conditions 

Mm = 1, a= O" and are presented at the two angular positions e = 00, 9o" 
in the cross flow plane and at locations on the body surface and also 
along lines parallel to body axis but removed laterally from it by 
distances of 1, 2, and 4 times the maximum equivalent body diameter D. 
Thus, the pressure distributions given for 8 = o" and r/D = 1,2 cut 
across the wing surface, intersecting the leading edge at the axial 
positions x/J = 0.416, 0.583, respectively. 

The wing-body surface pressure distributions shown in the first 
plot of figure 4, when compared to the pressure distribution on the 
equivalent body alone, demonstrate the large effect that the wing has 
upon the body pressure distribution. Moreover, it clearly shows the 
rapid variation of the pressure distributions caused by the singularities 
at the points (x/J = 0.322, 0.75) where the wing leading and trailing 
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edges pierce the body surface. These discontinuities are related to the 
characteristic logarithmic singularity associated with the two-dimensional 
thickness problem (i.e. &,t) of flow at a sharp edge. The flow field 
distributions shown at r/D = 1, 2, and 4 illustrate several interesting 

effects. Perhaps most prominent is the propagation into the flow field 
of the singularities which occur in the surface pressure distributions at 
the points where the leading and trailing edges intersect the body 
surface. This is a direct consequence of using the transonic equivalence 
rule to provide flow-field information based upon knowledge of flow proper- 
ties on the body surface. Also evident in the distributions along the 
1 ines r/D = 1,2, e = O" are the logarithmic singularities at 
x/J? = 0.416, 0.583, respectively, as those lines cross the wing leading 
edge. Further insight into that nature of these distributions is pro- 
vided by the cross plot of spanwise pressures given in the last graph of 
figure 5. The longitudinal flow field distributions shun along the 
lines r/D = 1, 2, 4, 8 = 9o" clearly exhibit the rapidity at which the 
flow field becomes axisymmetric and equal to that about the equivalent 
body. At the lateral distance of r/D = 4, the pressure distribution at 
8 = 9o” is virtually indistinguishable from that about the equivalent 
body (except for the exponentially small region of influence of the 
logarithmic singularities propagating from the body surface), while the 
corresponding distribution at 8 = o", which would be most strongly influ- 
enced by the wing, shows that the effect of the wing on the flow field is 
negligible at all axial locations except in those in the near vicinity 
of its maximum span. Knowledge of the region in which the flow about 
geometrically complex configurations of this type can be considered axi- 
symmetric and equal to that about the equivalent body is quite important 
and can, for example, provide useful informatlon for a completely numerical 
finite difference solution in applying the far-field boundary condition. 
The drag coefficient for this configuration, which is provided by evalu- 
ating the integral given by equation (44), is found to be CD = 0.0750. 

Analogous results are given in figure 5 for a lifting flow about 
this same configuration for the free stream conditrons Mco = 1 and 

0 a=2. We note again that the singularities discussed with regard to 
the nonlifting case also appear here. Moreover, due to the nature of 
lifting flows near a sharp edge, the logarithmic singularities associated 
with the thickness problem are further reinforced by the inverse square 
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root behavior of the lifting problem. The net effect, of course, is the 
more rapid variation in pressure evident in those regions. Nevertheless, 
the flow field distributions again display the strong tendency to 
return to those generated by the equivalent body alone. This point is 
most apparent in the spanwise distributions shown in figure 5 at various 
axial locations for the upper and lower surfaces of the wing-body combination 
and also at locations out in the flow field. The large pressures generated 
in the region close to the trailing edge and near the maximum span of 
the wing, as shown in these plots, results in loadings there which are 
particularly Large. This is exhibited by the last plot given in figure 5 
which shows the difference in pressure between the lower and upper surface 
of the wing-body at various axial locations. At this angle of attack, 
equations (53), (56), and (58) provide the following values for the 
aerodynamic coefficients: 

cL = 2.475, CD = 0.118, Cm = 0.1454 

Corresponding results of nonlifting purely subsonic and purely 
supersonic flow for this same configuration are presented in figures 
6 and 7. Figure 6 exhibits the surface and flow-field pressure distri- 
butions at M, = 0.80 while figure 7 gives the analogous results at 

% = 1.20. Because the two-dimensional cross flow potentials @s,a, 

G 2,tz' and G2 B are all independent of free stream Mach number, the 
sole differenke in the pressure coefficient for the same configuration 
at M =l co and those at purely subsonic and supersonic Mach numbers 
arises from the ypcc term assocrated with the solution to the full 
transonic equation (2) for flow about the equivalent nonlifting body of 
revolution. Consequently, the pressure coefficients shown in figures 4, 
6, and 7 exhibit the same general behavior and differ from one another 
only in level. Hence, the loadings shown in figure 5 for M, = 1 would 
be identical to those at Mm = 0.80, and 1.20 at the same angle of 
attack, as would the lift and pitching moment, but the drag would not 
be. Thus, we have the following aerodynamic characteristics for this 
configuration 
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where the drag for the nonlifting subsonic case (M, = 0.80, a = O") 
differs from zero because of the truncated nature (Xb/e = 0.86) of the 
body. 

In order to illustrate to some degree the effect that wing-body 
goemetry changes have upon transonic pressure distributions, figure 8 
presents the nonlifting surface and flow field pressure distributions at 
M, = 1 for the wing-circular body configuration which was planned for 
experimental evaluation as discussed above, while figure 9 exhibits 

analogous results for a wing-body combination composed of a parabolic- 
arc body having an elliptic cross section that maintains a constant 
ratio of major to minor axis h = 3 but with a wing and an equivalent 
body identical to that of the configuration studied in figures 4 through 7. 

In figure 7, the extremely rapid variations in surface pressure 
displayed near the body midpoint are due to the discontinuity in slope 
of the indented body at that point. (This discontinuity occurs since 
in order to keep the equivalent body area distribution together with its 
corresponding derivatives smooth, it is necessary for the indented body 
to have a slope discontinuity at x/J = 0.5 to compensate for the one 
due to the wing.) The flow field pressure distributions given in that 
figure point out that this peaky behavior persists well into the flow 
field. Consequently, the rapid variational nature of these results 
indicates that wing configurations of this type with the attendant body 
slope discontinuities are probably not well-suited for experimental 
verification of the theory and that configurations having wings with 
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straight trailing edges which cause no indented body slope discontinuities 
would be more satisfactory. 

The surface pressure distributions presented in figure 9 for the wing- 
indented elliptic body combination described above are similar in be- 
havior to those shown in figure 4 for the corresponding circular body, 
with the one exception being a small neighborhood near the rear of the 
indentation in which a slight expansion occurs in an otherwise 
monotonic compression. This is undoubtedly caused by the occurrence 
of a zero body slope on the indented body in that region. The flow 
field distributions given in that figure indicate that this behavior 
persists into the flow field so that at r/D = 4 it still produces a 
slight asymmetry in an almost axisynunetric flow field. We note that in 
reference 3 it was shown that for a smooth elliptic body alone having 
h = 3 the flow field becomes essentially axisymmetric at r/D = 1. 

Bumpy and Indented Bodies 

The experimental sruface pressure distribution at M, = 0.8 from 
reference 32 together with the theoretical results provided by integrating 
the local linearization equation for purely subsonic flow (eq. (109)) andthen 
using equation (3) with a=0 are shown in the lower plot in figure 10 
for a body of revolution consisting of a basic parabolic-arc shape 
having a thickness ratio D/d = l/14 and a bump with ordinates described 
by equation (89) superimposed upon its midsection. The axial extent of 
the bump runs from Xl/l = 0.393 to x,/J = 0.607, and its maximum 
height is equal to 10 percent of the maximum basic body diameter, so 
that for this case ARmadJ = l/140. Results are given in the upper 
plot in figure 10 for the corresponding indented body. It can be seen 
from these two figures that while the theoretical curves follow the 
general trend of the data reasonably well, discrepancies with the 
experimental results are evident for the compression and/or expansion 
peaks. In the case of the bumpy body, the theory underpredicts the 
compression peaks near the start and end of the bump, and it under- 
predicts the expansion at the crest of the bump. For the indented body, 
the expansion peaks near the beginning and end of the indentation are 
underestimated, while the compression peak at the trough of the inden- 
tation is in good agreement with the data. 
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Corresponding results for these same bodies are given in figure 11 
for purely supersonic flow. The experimental pressure distribution for 

%a = 1.20 from reference 32 together with that obtained from integrating 
the set of supersonic local linearization expressions (eq. (112)) are 
shown in the lower plot of figure 10 for the bumpy parabolic-arc body 
and in the upper plot for the indented one. Again, while the theory 

follows the trend of the experimental results, the compression and 
expansion peaks are generally not well predicted. For the bumpy body, 
we note that the compression peak at the start of the bump is under- 
estimated while the expansion crest is far overpredicted. Because of 

this large over expansion, the pressure is unable to recover sufficiently 
on the rear of the bump, so that when the point x = x2 + @R is reached 
and the transfer made to the last of the set of three differenital 
equations in equation (112),the resultant expansion over the rear of 
the basic parabolic-arc body carries the theoretical result far above 
the data. A similar behavior is evident for the indented body shown in 
figure 11. Here the expansion peak at the start of the indentation is 
somewhat underpredicted, the compression peak at the trough of the in- 
dentation is in good agreement with the data, 'but the expansion near 
the rear of the bump is too large resulting in the same general behavior 
over that portion of the body as evidenced in the case of the bumpy 
body. 

For these supersonic flows we also note that .the occurrence of two 
effects not present in the corresponding subsonic cases. First, because 
for supersonic flows information regarding the body (or any field point, 
for that matter) is transmitted along the nonlinear characteristics 
defined by 

dx 
yg=? (116) 

and since the sources representing the body are placed on the axis 
rather than the surface, the theoretical surface pressure distribution 
lags the body geometry by approximately ,3R. In comparisons with data, 
this phenomenon is most clearly evident in figure 11 at points near the 
beginning of the bump or indentation and somewhat less noticeable 
at the rear of these distortions. Second, although the surface TJelocity 
is continuous, the discontinuities in the second derivative of the area 
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distribution S"(x) at xi and xe result in singularities in the fluid 
acceleration on the body, dus/dx, at the points 

x = x1 + SR 

(117) 
x = x2 + SR 

i.e., the locations at which transfer is made between the various 
differential forms in equation (112). We note the presence of these 
singularities by the rapid variation in the predicted pressure coefficients 
shown in figure 11 in the regions immediately behind those two points. 
It is important to realize that these singularities are not unique to 
the local linearization method but occur as well in the linearized 
solution. This point is discussed in more detail below. 

With regard to the discrepancies in peak values which occur in both 
the subsonic and supersonic comparisons, there exist two possible 
sources which may be acting separately or in combination. One factor is 
the inability of sources and sinks located on the body axis (rather 
than on the body surface) to represent adequately the flow behavior 
caused by the relatively rapid change in body geometry in those regions. 
The other factor involves the occurrence of sudden curvature changes on 
these bodies which could result in the violation, over a significant 
portion of the body length, of one of the basic assumptions made in 
deriving the local linearization equations (109) and (112),i.e. that the 
fluid acceleration on the body surface dus/dx remains small. 

As might be expected, both of these factors are more strongly evident 
for the supersonic cases studied than for the corresponding subsonic ones. 
Thus, the greatest effect on the local linearization solutions of these 
factors can be evaluated by comparing those solutions to the related 
linearized supersonic solutions. 

Starting with the expression for the limarized solution 

?- 1 
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-gnu E) de 1 
x-PeR 
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(118) 
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it is possible to derive the following form valid within the approximations 
of slender body theory, 

(0 < X < x1 + seR) 

1 
x-B aR 

+z I 
AS"(x) -AS"(E) dC -c AS;:) ln B.lR 

x- 4 
Xl 

(X-Xl)2 -p 
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(Xl + BjR < x < x2 + $R) 

1 
+2a 

AS" x ( ) -AS"(E) dE, + AS;;) ln h-X2!2- Bj2R2 
x - 4 

Xl 
(X-X~)~ -a 1 

2R2 

(~2 + BiR < x < i?) 

(119) 

From these expressions, it is clear that while the linearized velocity, 

u&.3 is continuous on the body surface, its first derivative duj/dx 
is not and has, in fact, a square root singularity at the points 
x=x,+@R a and x = x2 + @ k? R. Thesesingularities will always occur 
at points where the body curvature is discontinuous. The linearized 
pressure distribution given by equations (119) and (3) with a = 0 
have been calculated for the two bodies under consideration and are 
presented in figure 12. For the case of the bumpy body shown in the 
lower plot of figure 12 it is immediately apparent that the linear 
solution follows the data more closely than the local linearization 
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solution in the region near the crest of the bump and also further aft 
of it. However, in addition to the 8R lag mentioned previously, the 
linear solution still slightly underpredicts the compression peak at the 
start of the bump and while it reaches the proper level in the region 
farther behind the bump, it badly overpredicts the compression near 
x= x2 + BQR- A similar behavior is noted for the indented body shown 
in figure 11 where, as in the case of the bumpy body, the pressure in 
the vicinity of the rear of the indentation is badly overpredicted. Two 
conclusions can immediately be drawn. First, the better general agreement 
exhibited by the linear solution as compared with the local linearization 
solutions indicates that the large accelerations induced by the rapid 
curvature changes extend over a substantial protion of the body, and, 
therefore, cannot be assumed negligible. Secondly, the discrepancies 
near the start and end of the distortions clearly demonstrate the 
inadequacy of the slender body approximation in accounting for the rapid 
changes in surface geometry associated with these distortions and 
suggest that a quasi-cylindrical theory is necessary. Before discussing 
a quasi-cylindrical approach to the problem, however, one final point 
with regard to the slender body approach should be made. In the derivation 
of the local linearization equation (112) and also the linearized 
equation (119), several terms were approximated within the framework of 
slender body theory. The question could be raised whether these 
approximations may in fact cause the discrepancies with data rather than 
the placement of sources and sinks on the body axis. 

TO investigate this possiblility the "exact" linear solution given 
by equation (118) was determined together with the corresponding "exact" 
local linearization solution, which is given by the expression, 

& (..) = &(e)l = _ C$.$L -$$-j$$ - s"'(X2iBR) [ln{x+ '~~-8'"') 

(Continued on next page) 
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(120) 

where d (u/U,, ,/dx represents the contribution from the basic body. 
These results are presented in figure 13 for the bumpy body and indicate 
that the results become even more spurious than those of the approximated 

equations. Consequently, we conclude that slender body theory is simply 
not adequate to cope with these classes of shapes and recourse must be 

made to quasi-cylindrical theory. 
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While only very preliminary work has been done along analytical 
lines for developing a quasi-cylindrical theory at transonic speeds 
(see ref. 46), Nielsen (refs: 47, 48) has investigated in depth the 

linearized quasi-cylindrical supersonic problem. For that situation, 

it can be shown that the pressure distribution due to an axisymmtric 
distortion rob) of a cylinder of radius rc 

is given by 

C 1 
- - P “ErC 

(121) 

where the interference function W. is defined as 

(122) 

-1 
L signifies the inverse Laplace transform of the bracketed quantity 
and Km(x) is the modified Bessel function of the second kind of order m. 
This formulation was applied to the bumpy and indented bodies under consi- 
deration by passing a quasi-cylinder through the maximum thickness point 
of the basic parabolic-arc body and then assuming that the pressure 
distribution due to the basic body alone (which is nearly constant in 
the region near the midsection) could be calculated by using linearized 
slender body theory, while that of the distortion could be found from 
equation (121) with rc = D/2. The results of this calculation are 
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shown in figure 14. The good agreement at all intermediate and peak 
values for the compressions and expansions on both bodies is evident. 
Moreover, no @R lag exists as in the case of purely axial distributions 
of sources and sinks with the consequence that the surface geometry and 
pressure are now "in phase." Consequently, for the particular shapes under 
consideration a quasi-cylindrical theory does accurately predict the 

surface and flow field properties. In order to calculate the MD3 =: 1 
case, it is necessary to develop the corresponding quasi-cylindrical local 
linearization solutions. 

Before describing a possible procedure for carrying this out, one 
final point with regard to the slender body approach should be made. 
Although the slender body approximation is not valid for the present 
shapes (which have a maximum height of the distortion AR max equal to 
one-tenth of the maximum body diameter) there does exist some smaller 
distortion height at which that approximation would be accurate. Knowledge 
of this height is important since, if the additional cross-sectional area 
of the bump is associated with the area of finite thickness wing, then it 
is of interest to determine what limitations are imposed on the span and 
thickness of that wing by this constraint. A good estimate for the 
largest value of ARmax at which slender body theory remains valid can 
be found by calculating (by the method of local linearization) the flow 
at M =l for the basic parabolic-arc body up to 
at thzt point to the hyperbolic equation (112) 

x = xi, transferring 
, and then integrating toward 

the tail with successively smaller values of ARmax until the flow over 
the entire distortion does not change character, i.e. remains supersonic 
rather than oscillating between subsonic and supersonic as shown in the 
two figures on page 52. These calculations were carried out and it appears 
that for the above behavior to prevail the value of ~~~~~ must be 
smaller than its present value by an order of magnitude. Now if the 
cross-sectional area of the bump is associated with the area of, say, a 
simple triangular planform wedge wing of thickness/chord ratio t/c = 0.04 
and root chord equal to one-half the body length, then the maximum semispan 
of this wing is 1.5 times the maximum body diameter for the original value 

Of ARmax --already a small enough value to be of only marginal practical 
value. Reducing the size of ARmax .by an order of magnitude would reduce 
the maximum span to 0.75 times the maximum body diameter, so that the 
slender body solution would have little practical significance. 
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A logical procedure for developing the local linearization method in 
the quasi-cylindrical sense at M, = 1 would be to determine first the 
corresponding nonlinear subsonic and supersonic solutions. The general 
theoretical approach to solving the supersonic case is clear. If the 
same technique for deriving the local linearization solution used in 
the slender body axisynunetric flows (i.e. assuming small surface 
accelerations) is again employed for the quasi-cylindrical case, then 
direct application to equation (121) leads to the following expression 
for purely supersonic flows 

&($) = _ +[d2;x;) - & [ d2;;e) w. (f$ , I> de] (123) 
0 

where 8 is given by equation (110). However, we have applied equation 
(123) to the bodies studied herein and it appears that the assumption of 
small surface accelerations should not be made. Consequently, the local 
linearization theory would have to be rederived along these lines. 
Application to purely subsonic quasi-cylindrical flows would follow 
the same general technique used in deriving the supersonic result and 
would start with the analogous subsonic expression corresponding to 
equation (121). In this case, the interference function would involve 
inverse Fourier transforms of Bessel functions of the first kind Jm (x) 
rather than the inverse Laplace transforms of modified Bessel functions 
of the second -kind K,(x) (as given by equation (122)). Solution of the 

MC0 = 1 case would then involve consideration of the parabolic heat 
equation for accelerating flows given in reference 9 but now satisfying 
boundary conditions on a cylindrical surface rather than on the body 
axis. Treatment of regions of decelerating flow for this case would 
involve use of the limiting forms (Moo + 1) of the quasi-cylindrical 
subsonic and supersonic solutions discussed above. While there remain 
several questions of detail, the versatility of the local linearization 
method as shown by its successful application to thin airfoils (ref. 3, 

211, slender bodies of revolution (refs. 3, 8, 9, 10) and wings of finite 
span (ref. 49) strongly suggests that this theory should be developed in 
the quasi-cylindrical sense and that the resultant predictions will be 
both accurate and useful in a variety of Significant aerodynamic 
applications. 
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CONCLUDING REMARKS 

Analysis and development of associated computer programs have been 
conducted in order to develop calculative techniques for predicting 
properties of transonic flows about certain classes of slender wing-body 
combinations. The theoretical analysis is based upon a combination of 
the local linearization method and the transonic equivalence rule and 
applies to flows with free stream Mach numbers M, z 1, below the lower 
critical, and above the upper critical. 

Computational programs, which are documented under separate cover in 
a general user's manual, have been developed for finite thickness wing- 
body combinations in which the bodies are area-rule indented in such a 
manner that the resultant equivalent bodies remain smooth. These indented 
bodies are derived from two basic types of smooth body shapes, i.e., 

@Bodies of revolution having R - x/i, - (x/d)" or 1 - x/J - 
(1 - x/ajn 

@Parabolic-arc bodies having elliptic cross sections which maintain 
a constant ratio h(=a/b) of major to.minor axes along the entire 
body length 

The general class of wings considered are symmetric in planform about 
the azimuthal body meridian (x - z plane) and consist of straight leading 
and trailing edges swept at arbitrary angles (with the restriction that 
the trailing edge be either straight or swept-forward), with the positions 
of the leading and trailing edges of the root-chord located at arbitrary - 
locations on the body axis, 

x Wm 
and with profiles described by Zw - x - ($)" 

or l-cw- (1-c) where x 
CW 

is the axial distance from the leading 
edge and cw is thg local chord. 

These programs provide longitudinal pressure distributions for both 
nonlifting and lifting situations, at arbitrary angular positions in the 
cross flow plane at points along the body and wing surface and also along 
lines parallel to the body axis but removed at arbitrarily-specified 
lateral distances from it. In addition to the pressure distributions, 
the aerodynamic characteristics of lift, drag, and pitching moment are also 
provided. 

The theoretical pressure distributions predicted by these programs 
for certain members of the class of configurations described above indicate 
quantitatively the relatively large effects of wing thickness and lift on 
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both the body and flow field pressures, and also serve to point out the 
singularities characteristic to the theory as it is presently constituted. 
In addition, these results demonstrate the rapidity with which the flow 
field becomes axisymmetric and equal to that about the equivalent body. 
Finally, it is observed that wing-body combinations having wings with 
swept-forward rather than straight trailing edges produce very peaky surface 
and flow field pressure distributions and, consequently, are not as well 
suited for experimental verification of the theory as combinations having 
wings with straight trailing edges. 

Comparisons of theoretical and experimental results for axisymmetric 
bodies having bumps (or indentations) superimposed upon an otherwise 
smooth profile demonstrate the inadequacy of the slender body approximation 
of placing sources and sinks on the body axis rather than the surface to 
account for the rapid changes in geometry associated with these distortions; 
furthermore, these results suggest that a quasi-cylindrical theory is 
necessary to determine flows about these classes of shapes. Calculation 
of the linearized quasi-cylindrical supersonic solution confirms this 
conjecture. Moreover, comparisons of the linear and local linearized 
solutions indicate that large accelerations extending over a substantial 
portion of the body length are caused by the rapid curvature changes of 
these distortions, so that a modification of the local linearization 
method (which as presently constituted assumes small surface accelerations) 
is required in applications .to these types of shapes. Nevertheless, 
development of that method in the quasi-cylindrical sense appears feasible, 
and its already demonstrated versatility and success in previous two- 
and three-dimensional applications strongly suggests the usefulness and 
importance of this as a contribution to modern transonic theory. 

In conclusion, we emphasize that the techniques employed to obtain 
the results for the wing-body combinations presented here are not restricted 
to the particular classes of wings and bodies selected for study in this 
report, but possess much greater generality. Moreover, the solutions to 
the two-dimensional cross flow problems given are independent of Mach 
number and, consequently, can be combined with solutions other than 
those provided by the local linearization method (for example, finite 
difference solutions) for transonic flow about the nonlifting equivalent 
body. We suggest, furthermore, that experimental work be conducted to 
determine surface and flow-field pressure distributions on selected wing- 
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body combinations in order to more clearly define the extent to which 
the theory applies to configurations of this nature and, also, that 
consideration be given to developing the local linearization method in 
the quasi-cylindrical sense in order that theoretical results can be 
determined for transonic flows about practically important shapes of 
this category. 

Nielsen Engineering & Research, Inc. 
Mountain View, California 

November, 1971 

70 



1. 

2. 

3. 

4. 

5. 

6. 

7. 

8. 

9. 

10. 

11. 

12. 

13. 

REFERENCES 

Spreiter, J. R., Stahara, S. S., and Frey, W. H.: Calculative 
Techniques for Transonic Flows. NASA SP-228, 1969, pp. 53-73. 

Spreiter, J. R. and Stahara, S. S.: Developments in Transonic Flow 
Theory. Zeits. ffir Flugwiss., Bd. 18, Heft 2/3, 1970, pp. 33-40. 

Spreiter, J. R. and Stahara, S. S.: Calculative Techniques for 
Transonic Flows About Certain Classes of Airfoils and Slender 
Bodies. NASA CR-1722, 1971. 

Steger, J. L. and Lomax, H.: Numerical Calculation of Transonic 
Flow about Two-Dimensional Airfoils by Relaxation Procedures. 
AIAA Paper No. 71-569, presented at AIAA 4th Fluid and Plasma 
Dynamics Conference, Palo Alto, Calif. June 21-23, 1971. 

Bowley, W. W. and Prince, J. F.: Finite Element Analysis of General 
Fluid Flow Problems. AIAA Paper No. 71-602, presented at AIAA 4th 
Fluid and Plasma Dynamics Conference, Palo Alto, Calif., June 21-23, 
1971. 

Tai, T. C.: Application of the Method of Integral Relations to 
Transonic Airfoil Problems. AIAA Paper No. 71-98, presented at 
AIAA 4th Fluid and Plasma Dynamics Conference, Palo Alto, Calif., 
June 21-23, 1971. 

Krupp, J. A. and Murman, E. M.: The Numerical Calculation of Steady 
Transonic Flows Past Thin Lifting Airfoils and Slender Bodies. 
AIAA Paper No. 71-566, presented at AIAA 4th Fluid and Plasma 
Dynamics Conference, Palo Alto, Cslif., June 21-23, 1971. 

Spreiter, J. R.: Aerodynamics of Wings and Bodies at Transonic 
Speeds. J. Aero-Space Sci., vol. 26, no. 8, Aug. 1969, pp. 465-487. 

Spreiter, J. R. and Alksne, A.: Slender Body Theory Based on Approxi- 
mate Solution of the Transonic Flow Equation. NASA TR R-2, 1959. 

Spreiter, J. R., Smith, D. W., and Hyett, B. J.: A Study of the 
Simulation of Flow with Free-Stream Mach Number 1 in a Choked Wind 
Tunnel. NASA TR R-73, 1960. 

Heaslet, M. A. and Spreiter, J. R.: Three-Dimensional Transonic 
Flow Theory Applied to Slender Wings and Bodies. NACA Rep. 1318, 
1957. 

Spreiter, J. R.: On the Application of Transonic Similarity Rules 
to Wings of Finite Span. NACA Rep. 1153, 1953. (Supersedes NACA 
TN 2726). 

Liepmann, H. W. and Roshko, A.: Elements of Gasdynamics. John 
Wiley and Sons, Inc., New York, N. Y., 1957, pp. 202-205. 

71 



14. Oswatitsch, K.: Die Theoretischen Arbeiten iiber Schallnahe Str&nungen 
am Flugtechnischen Institut der Kungl. Tekniska Hakskolan, 
Stockholm. Proc. Eighth Int. Cong. on Theo. and Appl. Mech., 
1953. 

15. Spreiter, J. R.: Theoretical and Experimental Analysis of Transonic 
Flow Fields. NACA-University Conference on Aerodynamics, Construc- 
tion, and Propulsion, Vol. II, "Aerodynamics," 1954, pp. 18/l - 
18/17. 

16. Spreiter, J. R.: The Aerodynamic Forces on Slender Plane and 
Cruciform-Wing and Body Combinations. NACA Rep. 962, 1950. 

17. Heaslet, M. A., Lomax, H., and Spreiter, J. R.: Linearized Com- 
pressible-Flow Theory for Sonic Flight Speeds. 
1950. 

NACA Rep. 956, 

18. Taylor, R. A. and McDevitt, J. B.: Pressure Distributions at Tran- 
sonic Speeds for Parabolic-Arc Bodies of Revolution Having Fineness 
Ratios of 10, 12, and 14. NACA TN 4234, 1958. 

19. McDevitt, J. B. and Taylor, R. A.: Pressure Distributions at 
Transonic Speeds for Slender Bodies Having Various Axial Locations 
of Maximum Diameter. NACA TN 4280, 1958. 

20. McDevitt, J. B. and Taylor, R. A.: Force and Pressure Measure- 
ments at Transonic Speeds for Several Bodies Having Elliptical 
Cross Sections. NACA TN 4362, 1958. 

21. Spreiter, J. R. and Alksne, A.: Thin Airfoil Theory Based on 
Approximate Solution of the Transonic Flow Equation. NACA Rep. 
1359, 1958. (Supersedes NACA TN 3970). 

22. Lighthill, M. J.: Supersonic Flow Past Bodies of Revolution. 
Aero. Res. Council, R. & M. 2003, 1945. 

23. Ward, G. N.: Supersonic Flow Past Slender Pointed Bodies. Jour. 
Mech. and App. Math., vol. II, part 1, 1949, pp. 75-97. 

24. Stocker, P. M.: Supersonic Flow Past Bodies of Revolution with 
Thin Wings of Small Aspect Ratio. Aero. Quart., vol. III, May 1951, 
PP- 61-79. 

25. Spreiter, J. R.: The Aerodynamic Forces on Slender Plane and Cruci- 
form-wing and Body Combinations. NACA Rep. 962, 1950. 

26. Spreiter, J. R. and Sacks, A. H.: A Theoreticai Study of the 
Aerodynamics of Slender Cruciform-Wing Arrangements and Their 
Wakes. NACA Rep. 1296, 1957. 

27. Adams, M. C. and Sears, W. R.: Slender-Body Theory - Review and 
Extensions. J. Aero. Sci., vol. 20, no. 2, 1953, pp. 85-98. 

28. Ashley, H. and Landahl, M.: Aerodynamics of Wings and Bodies. 
Addison-Wesley Publishing Co., Reading, Mass., 1965, p. 121. 

72 



29. 

30. 

31. 

32. 

33. 

34. 

35. 

36. 

37. 

38. 

39. 

40. 

41. 

42. 

43. 

Ward, G. H.: Linearized Theory of Steady High-Speed Flow, Cambridge 
University Press, 1955. 

Nielsen, J. N.: Missile Aerodynamics. McGraw-Hill Book Co., Inc., 
New York, N. Y. 1960, p. 30. 

Byrd, P. F. and Friedman, M. D.: Handbook of Elliptic Integrals. 
Springer-Verlag, Berlin/G0ttingen/Heidelberg, 1954. 

Taylor, R. A.: Pressure Distributions at Transonic Speeds for 
Bumpy and Indented Midsections of a Basic Parabolic-Arc Body. 
NASA Memo. l-22-59A, 1959. 

Loving, K. L. and Williams, C. V.: Aerodynamic Loading Characteristics 
of a Wing-Fuselage Combination Having a Wing of 45O Sweepback 
Measured in the Langley 8-Foot Transonic Tunnel. NACA RM L52B27, 
1952. 

Bielat, R. P.: A Transonic Wind-Tunnel Investigation of the Aero- 
dynamic Characteristics of Three 4-Percent-Thick Wings of Sweepback 
Angles 10.8O and 47O, Aspect Ratio 3.5, and Taper Ratio 0.2 in 
Combination with a Body. NACA R&l L52B08, 1952. 

McDevitt, J. B.: An Experimental Investigation of Two Methods for 
Reducing Transonic Drag of Swept-Wing and Body Combinations. 
NACA RM A55B21, 1955. 

Walker, H. J. and Maillard, W. C.: A Correlation of Airfoil Section 
Data with the Aerodynamic Loads Measured on a 45O Sweptback Wing 
Model at Subsonic Mach Numbers. NACA RM A55C08, 1955. 

McDevitt, J. B. and Haire, W. M.: Investigation at High Subsonic 
Speeds of a Body-Contouring Method for Alleviating the Adverse 
Interference at the Root of a Sweptback Wing. NACA TN 3672, 1956. 

Whitcomb, R. T.: A Study of the Zero-Lift Drag-Rise Characteristics 
of Wing-Body Combinations Near the Speed of Sound. NACA TR 1273, 
1956. 

McDevitt, J. B.: The Linearized Subsonic Flow About Symmetrical 
Nonlifting Wing-Body Combinations. NACA TN 3964, 1957. 

McDevitt, J. B. and Taylor, &. A.: An Investigation of Wing-Body 
Juncture Interference Effects at Transonic Speeds for Several 
Swept-Wing and Body Combinations. NACA RM A57A02, 1957. 

Lomax, H. and Byrd, P.: Theoretical Aerodynamic Characteristics 
of a Family of Slender Wing-Tail-Body Combinations. NACA TN 
2554, 1951. 

Sears, W. R.: General Theory of High Speed Aerodynamics. Princeton 
Univ. Press, Princeton, N. J., 1954, pp. 254-275. 

Mangler, K. W.: Calculation of the Load Distribution Over a Wing 
with Arbitrary Camber and Twist at Sonic Speed. British A.R.C., 
R. & M. 3102, 1955. 

73 



44. McDevitt, J. B.: A Correlation by Means of Transonic Similarity 
Rules of Experimentally Determined Characteristics of a Series of 
Symmetrical and Cambered Wings of Rectangular Planfonn. NACA TR 
1253, 1955. 

45. Page, W. A.: Experimental Study of the Equivalence of Transonic Flow 
About Slender Cone-Cylinders of Circular and Elliptic Cross Section. 
NACA TN 4233, 1958. 

46. Maeder, P. F.: The Linear Approximation to the Transonic Small 
Disturbance Equation. In Symposium Transsonieum, K. Oswatitsch, 
ed., Springer-Verlag, Berlin/Gattingen/Heidelberg, 1964, pp- 112-125. 

47. Nielsen, J. N.: Supersonic Wing-Body Interference, Ph. D, Thesis, 
Cal. Inst. of Tech., 1951. 

48. Nielsen, J. N.: Tables of Characteristic Functions for Solving 
Boundary-Value Problems of the Wave Equation with Application to 
Supersonic Interference. NACA TN 3873, Feb,, 1957, 

49. Alksne, A. Y. and Spreiter, J. R.: Theoretical Pressure Distri- 
butions on Wings of Finite Span at Zero Incidence for Mach Numbers 
Near 1. NASA Rep. R-88, 1961. 

74 



(1-M;) + + xx 

UC0 

Y 
++ =o 

zz 

+yy + +zz = 
@Jy + I) 

ua 

[ \ +2,a ,’ +2,!, 38 ; +B-, 

4) 2 + g(x) FOR SMALL r 

Figure l.- Transonic equivalence rule for 
slender wing-body combinations. 



-A- 
- 

: 
X rte 

x ’ 
rtel 

Figure 2.- General configuration of finite thickness 
wing-indented circular body combinations. 



"rte 

X rte7 

- 

x ’ rle 

I 

. . 

t - I 
’ I ’ \ 
\I: 
\I/ 

Y 
x 

Figure 3.- General configuration of finite thickness 
wing-indented elliptic body combinations. 



C 0 
P 

C 
P 

I I 

Body surface Body surface 
l- l- 

I I 

r - = 3 
D 

-_---- 

(a) Longitudinal pressure distributions 

LEGEND 
Wing-indented body, 6 = 0' 

--- Wing-indented body, 8 = 90" 
--- - Equivalent body 

Figure 4.- Theoretical surface and flow field pressure distributions 
at MC.. = 1 for a nonlifting parabolic-arc profile wing--indented 

parabolic-arc body combination; equivalent body thickness 
ratio D/L = l/12, wing aspect ratio AR = 2, thickness/ 

chord ratio t/cw = 0.04, and with Xree,L = 0.25 
X rte/i = 0.75, xb,a = 0.86. 

78 



-0.2 

-0.1 

C 
P 

o-z4 ' vy+ ' I 

I I 
O.l- I 

I 
I 

I I 
0.2u.L 1 II _I I I I ! I I 

i 
I I 

0.2 I I I ’ I I I I 1 I I 

0 .5 1 .O 

Figure 4.- Continued. 

79 



-0.3 

-0.2 

-0.1 

C P 
0 

0.1 

0.2 

I I I 

I I I 

0 1 2 3 4 

Y/D 

(b) Spanwise pressure distributions 

Figure 4.- Concluded 

80 



-0.3 

-0.2 

-0.1 

C 0 
P 

0.1 

0.2 

0.3 
0 

--- @ = - @I 

I I 
7 n 

I .5 

I X/,0, 
I 

I 

1.v 

I 
4 

;= 3 

---__ 
1’- --4 - - \ 

--D/2 

(a) Longitudinal pressure distributions 

Figure 5.- Theoretical surface and flow field pressure 
distributions andloadings at % = 1 and .i = 2,' for a 

parabolic-arc profile wing--indented parabolic-arc 
body combination; equivalent body thickness ratio 

D/i = l/12, wing aspect ratio AR = 2, thickness/ 
chord ratio t/cw = 0.04, and with X,k,/~=O.25, 

Xrte/r = 0.75, x),/J; = 0.86. 

81 



C 
P 

C 
P 

-0.3 

-0.2 

-0.1 

0 

0.1 

0.2 

-0.3 

-0.2 

-0.1 

0 

0.1 

0.2 

I- 1 
r-2 

I 1 I I I ’ I ’ I 

D I I 
-e = + 900 

I I 
--- z-90 8 

Ol I 

\ ---- 
I I 
I I 

1 I II 1 I I I I I I 
I 

I 
I I I 

r 
I I 

D= 2 I 
-e=+oOl 
---0 =- 0 01 ,‘I 

I 

< ,k/’ 

1’ I 

; 

I I I : 
I I 

I I I I I I I I ! I I 

I 
I 

-0.3 
I 

I I I I I I I I 

i 

I I 
Body surface I 

-0.2 - - 
9 = + 90”; 

---r: = - 900 I 

-0.1 - 

C 
P 

I 

0 . 5 1.0 

x/i 

82 Figure 5.- Continued. 



C 
P 

-0.3 I I I ( I I I 
r -=4 

I I I I 

D I 
ia = +gfJo I 

-0.2 - - I I --- v = -900 

C 
P 

Figure 5.- Continued. 

83 



-0.4 

-0.3 

-0.2 

-0.1 

C 0 
P 

0.1 

0.2 

0.3 

84 

I I 

-Upper surface 
---Lower surface 

X -=.7/ I 

I 
I 

/ 
/ 

0 1 2 3 4 

Y/D 

(b) Spanwise pressure distributions 

Figure 5.- Continued. 



cc 1 - 
p e 

(C 1 Pu 

0 I I 
0 1 2 3 4 

Y/D 

(c) Spanwise loading distributions 

Figure 5.- Concluded. 
85 

I 



0.1 

0.2 

I I 
I I I I I I I I I I I I I I ,:I , ,:I I I I 

I I 

-0.2 

-0.1 

0 

0.1 

0.2 

0.3 

I I 
Body surface 1 I 

>;;*-Jf ' 

\ 
\ 

I 

\ 
I I I ’ I I I I 

0 1.0 

r - = 3 
D 

LEGEND 
Wing-indented body, 0 = O0 

--- Wing-indented body, fi = 90" 
----- Equivalent body 

Figure 6.- Theoretical surface and flow field pressure 
distributions at M.. = 0.80 (purely subsonic flow) 

for a nonlifting parabolic-arc profile wing-- 
indented parabolic-arc body combination; 
equivalent body thickness ratio D/$ = l/12, 

wing aspect ratio AR = 2, thicknesdchord 
ratio t/c, = 0.04, and with X,-tie/l = 0.25, 

86 
‘ilie = 0.75, xb,l: = 0.86.. 



-0. 2 I I I ( I I I I I I 
rc4 X 

- t 

I 

,d/-W.d 

I 
-0.1 1 

C 
t- --- 

- -q-c--- 

-1 i P 
I 

0.1 1 
I 

I 

I I 
I 

0.2 I I I I I I I 

-0.2 

-0.1 

C 0 
P 

0.1 

0.2 

I I 

I 
I I I ’ I I I I ’ ( I r - = 2 

D I 
I 

Figure 6.- Concluded 
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Figure 7.- Theoretical surface and flow field pressure 
distributions at M, = 1.20 (purely supersonic flow) 

for a nonlifting parabolic-arc profile wing-- 
indented parabolic-arc body combination; 

equivalent body thickness ratio D/t = l/12, 
wing aspect ration AR = 2. thickness ratio 
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t/cw = 0.04, and with XS ree/& = 0.25, 

'rte/e = 0.75 , x-& = 0.86. 
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Figure 8.- Theoretical surface and flow field pressure 
distribotions at M, = 1.0 for a nonlifting parabolic-arc 

profile wing-- indented parabolic-arc body combination; 
equivalent body thickness ratio D/f! = l/12, wing 

thickness ratio t/cw = 0.04, and with 
Ege = Bte = tan-' C.51, Xrpe,& = l/3, 

X rte/i = 2/3, s,I = 0.86. 
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Figure 9.- Theoretical surface and flow field pressure 
distributions at M, = 1 for a nonlifting parabolic-arc 

profile wing--indented parabolic-arc body combination; 
having a body of elliptical cross section with X = 3; 

equivalent body thickness ration D/i = 1/12,wlnq 
aspect ratio AR = 2. thickness ratio 
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thw = 0.04,andwith Xrie,i = 0.25, 

Xrte/r = 0.75, Xb,, = 0.86. 
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Figure lo.- Theoretical and experimental surface pressure distributions at rY, = 0.80 
on a bumpy and indented parabolic-arc body of revolution; basic body thickness 

ratio D/i = l/14, maximum distortion height ARmax/i = l/70. 
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Figure ll.- Theoretical and experimental surface pressure distributions at MW = 1.20 

on a bumpy and indented parabolic-arc body of revolution; basic body thickness 
ratio D/e = l/14, maximum distortion height AFLmax/f = l/70. 
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Figure 12.- Theoretical and experimental surface pressure distributions at & = 1.20 
on a bumpy and indented parabolic-arc body of revolution; basic body thickness 

ratic D/,, = l/14, maximum distortion height ARmax/i = l/70. 
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Figure 13.- Theoretical and experimental surface pressure distributions at M, = 1.20 
on a bumpy parabolic-arc body of revolution; basic body thickness ratio 

D/i = l/14, maximum bump height ARmax/c = l/70. 
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Figure 14.- Theoretical and experimental surface pressure distributions at M, = 1.20 
on a bumpy and indented parabolic-arc body of revolution; basic body thickness 

ratio D/ii = l/14, maximum distortion height L.Rmax/L = l/70. 
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